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The variation of the heat flux at the surface of a solid body heated in a medium with variable tempera-  
ture is analyzed. A functional representation in terms of dimensionless groups is proposed. The proposed 
relations are checked experimentally. 

In heating practice one often encounters processes involving variable-temperature sources. 

The diffusion of heat in an isotropie solid is described by the following system of differential equations 
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and the values of g and g for the three classical body shapes are given in Table 1. The following cases, in which the 
temperature of the heat source varies with t ime according to a linear or an exponential law, are of considerable inter- 

est: 

Om(Fo ) = O m o +  Pd Fo, (a) 

O m (Fo) = 1 - -  ( 1 - -  0too ) exp ( - -  Pd Fo). (b) 

The rigorous solution of (1)-(4) taking into account (a) or (b) would be quite difficult due to the nonlinearity of 
boundary condition (2). For this reason the temperature field of this problem is usually determined by approximate 

methods [2-8]. 

The problem can be solved by finite differences. The body is divided into several layers Ax = R/N, and the dif- 
ferential equations (1)-(4) are replaced by finite-difference equations [q-9]. 

For the plate 
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The thermophysical properties are assumed to be constant, and the init ial  temperature distribution is assumed to 
be uniform over the cross section of the body. 

Table 1 
Values of g, g, and H(pn) for the Three Classical Body Shapes 

Body ~ ~ H ( ~ n )  Characteristic Equation 

Plate 

Cylinder 

Sphere 

2 

x 

r 

t" 

X 
(--  1) n cos ~n 

Io ~n 

1o (~n) 

r 
sin ~n - ~  

r 
~ -  sin t~n 

sin ~n = 0 

I0 (~n) = 0 

tg ~n-~-~n 

The half- thickness of the plate (in the case of symmetr ica l  heating on both sides) and the radius of the cylinder 
were di~/ided into 20 layers of equal thickness, The ratio between the t ime  and space steps was 

A Fo  A Fo 1 

A X ~ A~ 2 4 

i, e . ,  the step in the Fourier number was AFo = 1/1600, 

Calculations of radiative heat  transfer were performed on electronic digital computers over wide ranges of d imen-  
sionless init ial  temperature  of the solid body 00 = 0.15-0.  5, dimensionless initial  temperature of the heating medium 
0too = 0 .4 -0 .8 ,  and radiative heat-transfer parameter  Kima x = 0, 5-10 for the linear (Pd = 0, 05-0, 150) and exponen- 
t ial  (Pd = 0. 5-1. 0) laws. 
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In the majority of cases the calculation was carried out up to the value Fo = 10. 

The large amount of numerical material  obtained on digital computers makes it possible to follow the variation 
of the radiative heat flux during the heating of solid bodies by variable-temperature sources. 

An analysis of the heat-flux curves shows that these can be satisfactorily represented by the relatively simple re- 
lations 

Q a -  qa(F~ -- exp (--  d~), (7) 
qm (Fo) 

where 

Q s -  q s (F~  - - 1 - - e x p ( - - d 2 ) ,  
qm(Fo) 

(8) 

From (8) we obtain 

d = do + ~ Ki ~ Fo.  

T s (Fo) = Tm(FO ) ~ /1 - -  exp (-- d2) �9 (9) 

Figure 1 represents the resuks of (7) for the case of a flat plate. 
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Fig. 1. Variation of radiative heat flux at the surface of an infinite plate: a) linear 
variation of heat ing-medium temperature with t ime [00 = 0. 15, 0too = 0.4, Pd = o. 15, 
m = 1. 2, (1) Kimo = 0. 64, (2) 0. 32, (3) 0. 128, (4) 0. 064, (5) 0. 032,] b) exponential 
variation of heat ing-medium temperature [00 = 0. 15, 0mo = 0.6, Pd = 1.0, m = 1.2, 
(1) Kimo = 2.16,  (2) 1. 08, (3) 0. 432, (4) 0. 216, (5) 0. 108]: I) computer data, II) zonal 
method [5], IID according to (7). 

Thus, in quite a number of cases involving similar heating conditions it is advisable to use the approximate, but 
simpler, formula for the heat flux. 

Using the approximate formula for the heat flux at the surface (7), one can calculate the temperature field 
throughout the body, which can be represented in integral form [6] 
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The expressions for H(Pn) and the character is t ic  equations are given in Table  1, Equation (8), which approxi-  
mates the radiat ive heat  flux emit ted  by the surface of the body, agrees with numer ica l  results to within '~ 14%. 

Table 2 represents the errors associated with the tempera ture- f ie ld  approximations (9), (10) for various hea t ing-  
medium parameters.  Results are given for the surface and cen te r -p lane  of  an infinite plate of thickness 2R = 200 m m  

and 

k = 45.36 W/m �9 deg, a = 0. 045 m2/hr, SrC 0 = 4. 65 W / m  z �9 deg 4 

Table  2 
Values of Temperature  at the Surface and Center-Plane of an Infinite Plate During Heating 

t, hr 

0 , ' 5  

1,0 
1,5 
2.0 
2.5 
3.0 

0.5 
1.0 
1.5 
2.0 

T s , ~ 

Computer According 

Results to (9) 
~,% 

T s, ~ 

Computer According 
Results to (10) 

686.3 
1068.4 
1174.7 
1338.1 
1443,2 
1462,2 

713.8 
1199.3 
1483.6 
~680,2 

T m ( r  ) = 

678.7 
1021.3 
1223.6 
1373.5 
1460.9 
1471,4 

T in ( r )  

734.2 
1260,7 
1513.5 
1698.9 

1073 + 130 r 

-1-1.11 517.5 
-I-4.40 813.4 
+4 .16  1052.0 
--2.62 1156.9 
- -1 .78 1284.1 
- - 0 . 5 5  1396.3 

=1073 +320 r 

- -2 .90 607.5 
--4 .98 932.2 
--2.02 1231.7 

, - -1 .07 1564.3 

512.3 
778.8 

1012.3 
1184.1 
1358,2 
1407.5 

623.7 
974.2 

!254.3 
1580.1 

~,% 

-t-0.89 
+4 .12  
-+-3.74 
- -2 ,47 
--1. b8 
--0,  54 

--2.77 
--4.59 
.--1.96 
--0.93 

One can see that  the error in the temperature f ield does not exceed 5%, Expressions (7)-(9) are recommended 
for those values of the dimensionless groups, which cover the region of in i t ia l  data for computer  calculat ions.  

These l imits  include a wide range of cases of industrial  interest. 

Experimental  check. A spherical  body was heated in a spherical  furnace with a 1 . 2 - r a m nichrome heater.  Fur- 
nace power was ~' 1, g kW, Two hemispher ica l  copper screens were used to equal ize  temperatures,  P la t inum/p la t inum-  
rhodium thermocouples of 0. 5 m m  diam, were used to measure temperatures inside the body. Temperatures were re-  
corded by means of a 20-p0int  e lectronic  potentiometer .  The variat ion of the heater  temperature  was controlled by an 

automat ic  control  system, The signal from a 0, 5 - ram c h m m e l - a l u m e l  

thermocoaple  was fed to a programmed elect ronic  controller.  The hea t -  
ing device  was instal led in a vacuum chamber,  A modera te -vacuum dif-  

fusion pump was used, 

Figure 2 shows the variat ion of the surface temperature  and of the 

max imum temperature  difference in the body for heat ing of a 100-mm 
sphere of St3 steel  by a heater  with exponent ia l ly  varying temperature.  
The body was heated in a vacuum of  '~ 1. 0667 x 10-3-6. 667 X 10 -s 
newton/m 2. 

The exper imenta l  data  were compared with the results of c a l -  

culations according to (9), (10) with Sr = 0.75, k = 45 .4  W / m .  deg, 

a = O. 035 m 2 / h r / l l .  

The reduced absorptivi ty was ca lcu la ted  by Christiansen's for-  
mula  [10] 

1 1 
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27Y ~ ~  20 
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t r m a  x 
49 a 

0 7 !4, FO 
Fig. 2, Heating of a 100-ram steel  

sphere: a) exper imenta l ,  b) c a l cu -  
lated from (9), (10), 
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where R 1 is the radius of the  heated body, and ~ is the inside radius of the spherical  furnace. 
R~ = 0. 0625 m, e 1 = 0.88 (black oxidized copper), e z = 0.8 (oxidized steel) ['11], 

The thermophysical  properties used were the integral  means 

z f  Tf 

f~ . (T)dT . f C ( T ) d T  
,& _ _  To C - -  To , 

To --  Tf ' T o - - 7  f 

In our case R l = 0. 05 m, 

where Tf is the temperature  at the end of heat ing averaged over the body cross section. We used the sur face-mean 
temperature ,  since at the end of the heat ing process i t  differed very l i t t l e  from the cross section mean  (the temperature  
used was the surface temperature  at the end of the experiment).  

In most technologicai  applications,  the f inal  value of surface temperature  is specified, If it  is not specified,  then 
the functional  dependence of the thermal  coefficients may be represented by an equivalent  s tepwise-varying function. 

It should be noted that for almost l inear  variat ion of X and C the a r i thmet ica l  mean can be substituted for the 
integrat  mean.  

The proposed relations (7)-(9) are in satisfactory agreement  with exper iment  and may  be used for quick ca l cu l a -  
tion of the heat ing of solid bodies by radiation from a va r iab le - tempera tu re  heater.  

NOTATION 

- general ized dimensionless coordinate; g - body shape factor; O - T(x, r ) / T m a  x -- dimensionless absolute tem- 
perature, equal to ratio of  the temperature  at a given point and t ime  to the final temperature  of  the medium; Pd= bR2/ 

/aTma x, Pd = kR2/a - Predvoditelev numbers for the l inear and exponent ial  laws, respectively;  Kima x = qmax R/R 

Tma x, Kimo = qmo R = kTmo, Ki = qm(r)R/kTm(r)  - Kirpichev numbers for the maximum,  ini t ia l ,  and t i m e - d e p e n -  
dent temperature of  the heater,  respectively;  qm@) = SrC0(Tm(r)/100)4 - r a d i a t i v e  hea t  flux from heater  to body and 
from body surface to heater,  respectively;  qa(r) - heat  absorbed by body during heating; Qa = qa ( r ) /qm (r) - dimension-  
less net absorbed heat  flux; Qs = qs( r ) /qm(r)  - dimensionless heat  flux from body surface to heater;  m - exponent; d o - 
constant defined by (8) at Fo = 0; s r - r e d u c e d  absorptivity of system. 
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